cudf.DataFrame.reset_index#
- DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')#
Reset the index of the DataFrame, or a level of it.
- Parameters
- levelint, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default.
- dropbool, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.
- inplacebool, default False
Modify the DataFrame in place (do not create a new object).
- Returns
- DataFrame or None
DataFrame with the new index or None if
inplace=True
.
Examples
>>> df = cudf.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal <NA> >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal <NA> >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal <NA>
You can also use
reset_index
with MultiIndex.>>> index = cudf.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> df = cudf.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=('speed', 'type')) >>> df speed type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey <NA> jump >>> df.reset_index(level='class') class speed type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal <NA> jump